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Abstract 
 
Uncertainty has been a hot topic relative to science generally, and modeling specifically.  
Modeling uncertainty comes in various forms: measured data, limited model domain, model 
parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of 
the results.  This paper will address important components of uncertainty in modeling water 
temperatures, and discuss several areas that need attention as the modeling community grapples 
with how to incorporate uncertainty into modeling without getting stuck in the quicksand that 
prevents constructive contributions to policy making.  The material, and in particular the 
references, are meant to supplement the presentation given at this conference. 
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This paper is a slightly revised version of a presentation given at the American Institute of 
Hydrology Conference on Hydrologic Extremes: Challenges for Science and Management, 
Portland, OR, October 13-17, 2002. 
 
 
The Problem 
 
Nondeterminism means never having to say you are wrong. - Anonymous 
 
Water quality modeling has been and will continue to be important in a variety of assessments of 
stream health.  Recently, the Total Maximum Daily Load (TMDL) requirements of the Clean 
Water Act have served to increase the level of scrutiny given to water pollution modeling.  Water 
temperature is a key element for many water quality studies and sometimes the only attribute 
considered for analysis for some streams.  The question arises as to how good – how accurate – 
our models are.  This paper introduces many concepts that are important to consider when 
dealing explicitly with uncertainty in water temperature modeling.  It draws from an extensive 
literature base and serves to pass along references to important works that readers may wish to 
explore as they familiarize themselves with this topic.  This paper also introduces new features 
that have recently been added to the Stream Segment Temperature Model (SSTEMP; Bartholow 
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2002) that deal explicitly with how to incorporate measurement uncertainty in modeling.  
Important unanswered questions are highlighted. 
 
The paper is loosely organized in five sections paralleling the translation of the real world to the 
policy world as portrayed in Figure 1.   
 
The Real World 
 
As far as the laws of mathematics refer to reality, they are not certain; and as far as they are 
certain, they do not refer to reality.  – Albert Einstein 
 
The real world is fraught with uncertainty through time and space (Cleaves 1994; Essig 1998), 
and the whole process of translating the real world into a mathematical caricature from which we 
may learn something is a challenging task.  Yet we also know that well-structured models offer 
numerous advantages in organizing our thoughts and guiding our decisions.  Increased 
understanding of physical systems has produced some excellent models that perform well in 
terms of reproducing reality.  Modeling water temperature specifically is a good example of the 
progress made in both model development (e.g., Theurer 1984; Brown and Barnwell 1987; 
Sullivan et al. 1990; ODEQ 1999) and model applications (e.g., BioAnalysists Inc. 2002; Brown 
ND; Borsuk, Stow, and Reckhow 2001; Rounds, Wood, and Lynch 1998). 
 
 
Observations 
 
Everything is vague to a degree you do not realize till you have tried to make it precise.  -
Bertrand Russell 
 
To model successfully, we must carefully observe the real world.  We measure, we quantify, we 
estimate.  But measurements only approach the truth; we must always contend with bias and 
blunder, extrapolation and error.  Many authors have commented extensively on the sources of 
measurement and modeling error/uncertainty, and to some degree how to deal with them (e.g., 
Suter, Barnthouse, and O'Neill 1987).  To summarize, measurement error is composed of (1) 
equipment failures and their inherent accuracy, (2) human error, (3) and natural variability 
through space and time (Cleaves 1984), i.e., we measure in one place and assume that our 
measurements are widely representative.  We also make errors in artificially trimming the 
boundary of the system we are looking at, again either in time (because of limited data) or space 
(because we are ignorant of the full nature of cross-boundary dependencies).  Modeling error, in 
contrast, is composed of errors in estimating internal model parameters as well as the inescapable 
simplifications and assumptions: we extrapolate parameter values from other locations or times, 
or we borrow them from other models; and models suffer from structural weaknesses either 
because we have aggregated sub-components that should not have been combined, or inserted 
elements that we should have omitted because they add unwarranted complexity (Suter, 
Barnthouse, and O'Neill 1987; Borsuk, Stow, and Reckhow 2001; Brown and Barnwell 1987; 
Cleaves 1994).  We seldom truly know how to improve on what we have done.  Finally, there are 
always elements of surprise that simply push us beyond the boundaries of what we, and our 
models, 'expect'. 
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Modeling Realm 
 
Far better an approximate answer to the right question, than the exact answer to the wrong 
question, which can always be made precise. - John Tukey 
 
We are generally familiar with the trials and tribulations of modeling – calibration and validation 
– and I will not go into those details here.  But there remains a troubling area that I do not think 
we have adequately thought out.  Consider a classic display of goodness-of-fit such as that 
shown in Figure 2.  This chart displays a multi-year fit for mean daily water temperature on the 
Klamath River at a specific location using the US Army Corps of Engineers physically-based 
HEC-5Q model.  The multi-year sinusoidal form shown in the figure could just as easily be an 
hourly model.  The coefficient of determination between the simulated and observed values is 
quite high (r2 = 0.98), signaling an excellent goodness-of-fit.  But if we ask a slightly different 
question, "How much does the model explain deviations from the historical normal for each day 
(or each hour)", we get a far different result as shown in Figure 3.  In other words, we are now 
asking a new question – "How well does the model describe day-to-day (or hour-to-hour) 
fluctuations from the average?"  The same calibrated model, used for a different purpose, now 
has a coefficient of determination (r2) of 0.52 because, in effect, we have removed 
autocorrelation from the statistical calculations.  This is troubling to me and casts doubt on the 
confidence in the modeling we have traditionally done for answering certain specific questions. 
 
 
Simulated World 
 
When one admits that nothing is certain, one must, I think, also add that some things are more 
nearly certain than others.  - Bertrand Russell 
 
Previous versions of SSTEMP were deterministic; you supplied the 'most likely' estimate of 
input variables and the model predicted the 'most likely' thermal response.  This approach was 
comforting and easy to understand, but we know there is variability in the natural system and 
inherent inaccuracy in the model.  The previous model did not reflect variance in measured or 
estimated input variables (e.g., air temperature, streamflow, stream width) or parameter values 
(e.g., Bowen ratio, specific gravity of water); therefore it could not be used to estimate the 
uncertainty in predicted temperatures.  I recently added a feature that may be useful in estimating 
measurement uncertainty inherent in predicting water temperatures (Bartholow 2002).   
 
The built-in uncertainty routine uses Monte Carlo analysis, a technique that gets its name from the 
seventeenth century study of the games of chance.  The basic idea behind Monte Carlo analysis is 
that model input values are randomly selected from a distribution that describes the set of 
possible values composing the input.  That is, instead of choosing one value for mean daily air 
temperature, the model is repeatedly run with several randomly selected estimates for air 
temperature in combination with random selections for all other relevant input values.  The 
distribution of input values may be thought of as representing the variability in measurement and 
extrapolation error, estimation error, and a degree of spatial and temporal variability throughout 
the landscape.  In other words, we may measure a single value for an input variable, but we 
know that our instruments are inaccurate and we also know that the values we measure might 
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have been different if we had measured in a different location along or across the stream, or on a 
different day. 
 
SSTEMP is fairly crude in its method of creating a distribution for each input variable (see 
Figure 4).  There are two approaches in this software: a percentage deviation and an absolute 
deviation.  The percentage deviation is useful for variables commonly considered to be reliable 
only within a percentage difference.  For example, USGS commonly describes stream flow as 
being accurate plus or minus 10%.  The absolute deviation, as the name implies, allows entry of 
deviation values in the same units as the variable (and always in international units).  A common 
example would be water temperature where we estimate our ability to measure temperature plus 
or minus approximately 0.2 degrees.  In both cases, a sample value is chosen from either 1) a 
uniform (rectangular) distribution plus or minus the percent deviation, or 2) a normal (bell-
shaped) distribution with its mean equal to the original value and its standard deviation equal to 
1.96 times the deviation entered so that the set of samples drawn represent about 95% of the full 
distribution.  No attempt has been made to account for correlation among variables, even though 
we know there is some.   
 
SSTEMP's random sampling is used to estimate the average temperature response, both for mean 
daily and maximum daily temperature, and to estimate the entire dispersion in predicted 
temperatures.  You tell the program how many trials to run and how many random samples per 
trial.  The standard Monte Carlo approach simply runs many random samples, but by adding 
another layer -- the trials -- SSTEMP gains a two-fold advantage (Macaluso 1983, 1984).  First, 
by computing the average of the trial means, it allows a better, tighter estimate of the mean 
simulated value.  This is analogous to performing numerous modeling 'experiments' each with 
the same number of data points used for calibration.  Each 'experiment' produces a single 
estimate of the mean, and the cumulative set of experiments produces a refined estimate of the 
mean.  Second, one can gain insight as to the narrowness of the confidence interval around the 
mean depending on how many samples there are per trial.  The lesson to be learned here is that 
the number of data points you have to calibrate the model has a profound effect on the 
narrowness of the confidence interval.  For example, if you have only a few days' worth of 
measurements, your confidence interval will be far broader than if you had several months' worth 
of daily values.   
 
Once the analysis is complete, a summary of the temperature output is given (also Figure 4). The 
estimates of the mean are accompanied by the best estimate of their standard deviation and 95% 
confidence interval, followed by the 'full' estimate of the standard deviation for the complete 
range of model predictions.  Unlike the estimate of the mean and its deviation, the estimate of the 
'full' model uncertainty is considerably more broad.  The program also supplies an exceedence 
table displaying the probabilities of equaling or exceeding the stated temperature.  Finally, you 
may plot a bar graph showing the frequency of trial-average results (Figure 5). 
 
As you have seen, SSTEMP is attempting to answer two distinctly different questions: (1) What 
is the best estimate of the mean, and (2) what is the best estimate of the full model uncertainty.  
Which one should you use?  If your goal is to estimate the mean temperature, I recommend the 
95% confidence interval around the mean.  This would be 1.96 times the SD of the estimate of 
the mean, 0.34°F in the example shown in Figure 4.  If you want to estimate the variability in the 
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full model predictions, use 1.96 times the full distribution value, 1.21°F in the example.  As you 
can see, these two estimates can be widely different, though this depends on the number of trials 
and samples per trial.  Remember that there is no magic in these statistics; they simply 
characterize the distributions of the model results. 
 
 
Policy World 
 
All models are wrong, but some are useful.  – George Box 
 
Before we apply uncertainty in the world of policy, it is important to put it into perspective.  
There are many reasons why models are not used or used poorly (Bunnell 1989).  Models may be 
misused due to misunderstandings of the situation or results.  Some applications may be hastily 
done without proper validation.  Models today are increasingly challenged legally, or perhaps 
branded as "junk science" (Cleaves 1984; Steel et al. 2001).  Models can be disused because 
decision makers really didn't want to use a model at all, it didn’t meet the problem objectives, it 
is too complex or data intensive, or finally, because it is too inaccurate.  So you see that 
inaccuracy is really only a small part of this overall problem and 'correcting' our analyses to add 
uncertainty is no guarantee of success.  We must also keep in mind that incorporating uncertainty 
can be problematic in the sense that it can be ignored in favor of 'confident experts', swept under 
the rug by those who don't want to see it, can stimulate procrastination until certainty is achieved 
(which it can not be), or result in 'overprotective' safeguards that cannot withstand benefit:cost 
scrutiny (Cleaves 1994).  Some have also complained that presenting uncertainty information 
only serves to provide 'ammunition' for the nay-sayers.  
 
On the other hand, developing one's perspective includes appreciating the several benefits of 
dealing with uncertainty (Reckhow 1996).  Incorporating uncertainty in our analyses stimulates 
taking time to more fully understand the model's variables and their influence, often points to 
needed research, can provide context across applications when duly reported, and adds 
credibility to counter the "junk science" claim (Cleaves 1994).  In effect, we are telling what we 
know and what we don't know – always a good idea.  Including uncertainty as I have been 
discussing it also replaces the worst-case scenario.  The worst-case scenario is good at getting us 
to think outside the rhomboid, but it has too low a probability of ever occurring to be taken very 
seriously (Suter, Barnthouse, and O'Neil 1987). 
 
There is another issue I'd like to point out as well.  Let’s take what I believe is a thought-
provoking example (Table 1), adapted from Evans (1982).  Imagine for a moment a 100% 
accurate model.  It predicts ‘violations’ of some temperature standard on 15 of 100 days in some 
given period.  But we know our monitoring is less than perfect and can detect violations (or non-
violations) only 95% of the time.  The question is, what is the probability on any given day in 
that 100-day period that a violation appears to occur?  Most people might initially say 95% of 15 
-- 14 or so -- but that would be incorrect.  The solution is achieved through the sometimes 
mysterious field of Baysian statistics.  In reality we have 85 non-violations, but because of the 
inaccuracy of our measurements, only 81 appear to be non-violations and 4 appear to be 
violations.  Similarly, we have 15 real violations, but 1 appears to be a non-violation and 14 are 
correctly characterized.  So actually 22% appear to be violations.  An open question persists: 
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how would the picture change if we acknowledge that we can never have a 100% accurate 
model? 
 
One other problem has been a thorn in the side.  Let’s say that you run a Monte Carlo analysis as 
has been discussed, or arrived at uncertainty bounds by some other means and you characterize 
the model’s uncertainty with a mean value plus or minus 1.5 degrees.  Then you repeat the 
Monte Carlo simulation or simulate a "what-if" condition meant to describe a treatment option 
you are evaluating (let’s say it is adding shade).  This treatment reduces simulated temperatures 
by 6/10 degree (Figure 6).  Some folks would look at this and say “no difference” but I believe 
they are wrong.  Really the uncertainty bounds define the cloud on the whole model application 
and the proposed treatment shifts that whole cloud.  This should be significant.  We are going to 
need help from statisticians on this one. 
 
Many other questions remain unanswered, too.  Perhaps at the top of the list is how to treat the 
"margin of safety" criterion (NRC 2001).  If our numerical standards allow for the standard to be 
exceeded a certain percentage of the time, can uncertainty analysis be used to tackle these 
problems?  Borsuk, Stow, and Reckhow (2001) have some interesting ideas on the mechanics of 
the approach, but do not (and probably cannot) adequately address the trade-offs that must occur 
in the policy world or the issues involved with the Baysian statistics, as given in the Evans 
(1982) example. 
 
 
Conclusion 
 
No amount of sophistication is going to allay the fact that all your knowledge is about the past 
and all your decisions are about the future. - Ian E. Wilson 
 
Lack of an uncertainty analysis in water temperature modeling will not likely be seen as a 
limiting factor in analyses such as TMDL investigations (Boyd 2000).  However, we need to 
learn what ‘works’ and what does not.  We do not want to fall into the practice of incorporating 
uncertainty analysis simply to provide an illusion of scientific objectivity.  Therefore, I 
recommend incorporating it in our analyses, but not without giving serious thought as to what 
uncertainty really means and how to improve the way we deal with it.  Specifically, I recommend 
that we:  
 
1.  Acknowledge uncertainty in water quality modeling (NRC 2001).  Use it as a part of 
identifying sensitive variables.  Perform a Monte Carlo analysis even if it must be crude.  
However, keep uncertainty in perspective, as it is just one part of the process, and strive to use 
uncertainty to make better decisions, not simply quantify it (Conroy 1993). 
 
2.  Keep it simple stupid (KISS).  Model builders need to beware of adding more detail to models 
to try to account for remaining ‘error’ because that 'error' may really be uncertainty in disguise 
and the added detail may introduce its own degree of uncertainty.  Similarly, model users should 
beware ‘over-fitting’ models (Borsuk, Stow, and Reckhow 2001) to a small sample of measured 
data; small samples contain more uncertainty than large ones.  I maintain that the best models are 
those that need minimal calibration. 

 6



 
3.  Share your results.  Communicate performance statistics so that we can begin to compare 
across applications (NCASI 2002).  Report either the standard deviation of your estimates or the 
95% confidence interval whenever possible, but beware being too enamored with statistics 
(Bunnell 1989); there is really nothing magic about any of these metrics.  Report the distributions 
used in estimating the input variables so others can learn from your work.  Present results 
graphically to policy makers so we can get experience with how this information is interpreted 
and used.   
 
Beyond these technical recommendations, modelers need to accept more of a role as 'knowledge 
brokers' in our communications with policy makers (see Steel et al. 2001).  We must take 
responsibility for communicating what uncertainty means and integrating it into decisions, all the 
while remembering that we will not assume the liability for dealing with the decisions made.  
That's a tough position to be in.  And always remember that the uncertainties we have been 
discussing pale in comparison to the uncertainties in the realm of how the biological responds to 
thermal regimes. 
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Tables 
 
Table 1.  Example of Baysian approach to calculating probabilities of detecting water quality 
violations (adapted from Evans 1982). 
Reality Appear like non-violations Appear like violations 
Non-violations = 85 .95 x 85 = 81 .05 x 85 = 4 
Violations = 15 .05 x 15 = 1 .95 x 15 = 14 
Total = 100 82 18 
Or 18/82 = 22% appear to be violations 
 
 
Figures 
 

Basic Modeling Steps 
Real 

World 
    

 

 
Observations

   

  Temperature 
Model 

  

   Simulated 
World 

 

    Policy 
World 

Figure 1.  Important steps in the modeling process, from the real world to the policy world. 
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Figure 2.  Sample goodness-of-fit plot indicating excellent fit of the model to the measured data. 

 

 
Figure 3.  Same data as in Figure 3, but with autocorrelation removed. 
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Figure 4.  Adding input variable deviations to SSTEMP and text results. 

 

 
Figure 5. Results from 100 trials of SSTEMP uncertainty analysis. 
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Figure 6.  Example of treatment effectiveness uncertainty. 
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